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AUTOMATIC SELECTION OF METHODS FOR SOLVING STIFF AND
NONSTIFF SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS*

LINDA PETZOLDt

Abstract. This paper describes a scheme for automatically determining whether a problem can be
solved more efficiently using a class of methods suited for nonstiff problems or a class of methods designed
for stiff problems. The technique uses information that is available at the end of each step in the integration
for making the decision between the two types of methods. If a problem changes character in the interval
of integration, the solver automatically switches to the class of methods which is likely to be most efficient
for that part of the problem. Test results, using a modified version of the LSODE package, indicate that
many problems can be solved more efficiently using this scheme than with a single class of methods, and
that the overhead of choosing the most efficient methods is relatively small.
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1. Introduction. This paper describes a scheme for automatically determining
whether an initial value problem dy/dt=f(y,t), y(to)=yo, can be solved more
efficiently using a class of methods suited for nonstiff problems or a class of methods
designed for stiff problems. The decision is based on information which is available
at the end of each step of the integration, so that if a problem changes character (i.e.,
from nonstitI to stiff or vice versa) in the interval of integration, the solver automatically
switches to the class of methods which is likely to be most efficient for that part of
the problem.

This scheme is useful in several different situations. The user of an ODE solver
may not know whether his problem is stiff, or the solver may be called by another
code (a package for solving partial differential equations or boundary value problems,
for example) where the character of the problem is not known in advance. With the
technique described here, the most effective family of methods is chosen automati-
cally. Moreover, many "stiff" problems are often nonstiff in the initial phase, or
transient. Integrating through the transient with stiff methods (by a "stiff method,"
we mean a method designed for stiff problems) is very expensive, whereas nonstitt
methods are much better suited for this purpose. As the problem becomes stiff, the
code can eventually switch to the stiff methods. In general, problems may be stiff in
some intervals and nonstitt in others. This scheme selects the methods that are most
efficient for each interval.

Several techniques have been reported in the literature (Shampine [5], [6], [7])
for detecting stiffness. Our objective here is somewhat different, because in addition
to detecting stiffness we actually expect the code to shift to the methods which are
most appropriate for the problem. Some of the ideas in these papers (especially
Shampine [7]) have influenced the approach that was taken here. Shampine [8] outlines
a scheme for automatically altering the solution algorithm based on stiffness of the
problem for codes based on implicit A-stable formulas. Our scheme is somewhat
more general than his in that we automatically select a method from a class of methods
where all of the members are not necessarily A-stable.

The basic principles underlying the switching technique are quite simple and are
explained in the next section. Some of the difficulties involved in implementing this
scheme are described in 3, along with the approaches we have taken to resolve these
problems.

* Received by the editors December 3, 1980, and in revised form September 1, 1981.
t Applied Mathematics Division, Sandia National Laboratories, Livermore, California 94550.
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AUTOMATIC SELECTION OF SOLVING METHODS 137

This scheme has been implemented using Adams methods (orders 1-12 with
functional iteration to solve the corrector equation) as the family of nonstiff methods,
and backward differentiation formulas (BDF) (orders 1-5 with modified Newton
iteration) as the family of stiff methods. These seem to be good choices because
general purpose codes based on these methods are among the most effective codes
available for solving nonstiff and stiff problems, respectively [1], [2], [4]. We have
modified the code LSODE, an updated version of the GEAR package written by A.
C. Hindmarsh [3], to automatically switch between Adams methods and BDF
whenever it is appropriate. In order to illustrate the basic operation of the scheme,
some care has been taken to keep the changes to the code to a minimum and to avoid
exploiting any properties that are specific to this particular implementation (for
example, error estimates based on the Nordsieck vector). It is clear, however, that by
exploiting some of the features specific to a particular code, somewhat greater reliability
and efficiency of this scheme could be achieved. In addition to a block of code which
actually makes the decision and implements the change in method families, several
other changes to the code were made so that reliable information about the problem
could be obtained at each step. These changes occur in the stepsize and order control
logic and in the corrector iteration in the Adams part of the code. In 4 we describe
the results of applying this code to some test problems.

The overhead of making the switching decisions is small. For a truly nonstiff
problem, where the method family will never be changed (we always start out using
nonstiff methods because they are much cheaper per step and many stiff problems
are really nonstiff in the beginning of the interval), this code runs nearly as fast as
the unmodified LSODE, using the Adams option with functional iteration. For
problems which are stiff in some regions of the interval of integration and nonstiff in
others, this code can be much faster than using either Adams methods or BDF over
the entire interval. Because the cheaper nonstiff methods are used during the transient
of a stiff problem, significantly fewer Jacobian evaluations are required for many stiff
problems.

2. Basic strategy. As the integration proceeds our objective is to choose the
family of methods which will solve a given problem most efficiently. This decision is
made by comparing the method that is currently being used to the method that would
be used if the code switched to the other family of methods. To compare the methods,
we consider the stepsize that each method could use on the next step, and the cost
per step of each method. Since one step of a nonstiff method is typically much cheaper
than one step of a stiff method, we should favor using the nonstiff method as long as
the stepsizes it uses are not very much smaller than the stepsizes that would be used
by the stiff method.

What controls the stepsize for each method? For the nonstiff method several
considerations affect the stepsize. First, we must choose a stepsize so that the formula
is accurate over the next step (so that a norm of the local truncation error is less than
some constant e). If the code uses functional iteration to solve the corrector equation,
the stepsize must be small enough so that the iteration will converge rapidly. Finally,
the stepsize must be small enough so that the method will be stable. For the stiff
method, the stepsize is chosen so that the formula is accurate over the next step. We
will assume that stability and convergence of Newton’s method do not restrict the
stepsize that could be used by the stiff method. Obviously, this assumption may not
always be correct. However, while the stiff method we are currently using may not
be stable for the stepsize we would like to use on the next step, another method in
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138 LINDA PETZOLD

the family of stiff methods probably would be. Hopefully, the order control mechanism
would find that method. Skelboe [9] describes an order control strategy to accomplish
this; we will not take up this question here. If the stepsize is being controlled by
convergence of Newton’s method--due, for example, to a very poor approximation
to the Jacobian matrix--these assumptions will cause the code to stay with the stiff
methods even if they are doing very poorly. We see no good way to avoid this problem.

The first task is to estimate the stepsize that each method could use to achieve
the requested accuracy. Let N be the nonstiff method and S the stiff method. If N
and S are both linear multistep methods of order q, for example, then we can require
the norm of the principal part of the local truncation error to be less than e. Suppose
we are currently using method N with step size h CURRENT, that N is stable for this
problem with this stepsize, and that I[LTENII is our estimate for the local truncation
error. Then, it is well known that hN and hs (the stepsizes that the nonstiff and stiff
methods could use on the next step) should satisfy

/(+)

and

(2) hs =, IIrll h.

C and Cs are constants dependin on the methods N and $.

The stepsize of N may also be affected by considerations such as stability and
convergence of functional iteration, so we must find out what effects, if any, these
conditions will have. To accomplish this, we need an estimate for II,sfl y or an estimate
of the spectral radius o(6f/Sy).

When the stiff method is used, a Jacobian matrix is available and [I,f/,yll can be
computed directly. The norm used is the matrix norm which is consistent with the
vector norm that is used in the code--a weighted norm where the weights depend
upon error tolerances. The norm can be computed cheaply (relative to the cost of a
matrix factorization) whenever a new Jacobian matrix is formed. Thus, the norm
which is available at any given time may correspond to a time several steps back, but
it is not likely to be too severely in error because the stiff method reevaluates the
Jacobian whenever it changes significantly.

If we are using the nonstitt method, a lower bound for IItf/@ll can be obtained
very cheaply during the correcter iteration, using the ideas of Shampine [7]. The
bound is formed concurrently with our estimate of the rate of convergence of the
iteration. The basic idea is that if the iteration is written as

then

y(+) hyf(y ()) + O,

Ily(- y-11 --< hy

The maximum of these ratios,

lly (+’ y (11
hv Ily ()- y ("-’11
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AUTOMATIC SELECTION OF SOLVING METHODS 139

obtained over the current step, is a lower bound for 11/7yll. These bounds tend to
be quite good (near the spectral radius of 8f/By), although they fluctuate when the
dominant eigenvalues of 8]’/5y are complex. Unless the difference between two iterates
is so small that our estimate would be polluted by roundoff error, we force the nonstiff
part of the code to take at least two corrector iterations, in order to generate a lower
bound for II:/yll on each step.

In any case, suppose a lower bound K for II:/yll has been generated or 11/7yll
has been computed directly. Then hr must be small enough so that functional iteration
will converge at a sufficiently rapid rate r, for example r-< 1/2. Thus hr must satisfy
hm,ll,W,yll <- 1/2, so we will require

1
(3) hN <=2yK

Stability also constrains the stepsize for the nonstitt method. If rq is the radius of
the largest half disc contained in the stability region of method N, we must have

or the computation can become unstable. Thus, we require hr to satisfy

(4) hr <
rl

=2K
where K is our lower bound for II/yll and the factor is included so that we can
be reasonably sure that hr would lead to a stable computation (since K is only a
lower bound). We actually require h to satisfy (4) when computing with the nonstitt
method, not just for deciding whether to use the stiff or nonstitt methods. The reasons
for this will be discussed in the next section.

Once these estimates have been generated, it is a simple matter to decide whether
to use method N or method $. The stepsize that N could use on the next step is the
largest hr that satisfies conditions (1), (3) and (4). The stepsize that $ could use is
the largest hs that satisfies (2). Supposing that N is cheaper per step than S, so that
we would be willing to take as many as M/ steps with N for each step that would
have to be taken with $, then we will shift to method S (if we are currently using N)
if

(5) hs >-_ M+hr.

It is important to guard against changing families of methods too frequently, for it
might happen that the computation is no longer stable. To avoid this, we stay with
method $ possibly a little bit longer than what is really optimal; that is, shift from S
ton if

(6) hr >-_M-hs.

In our code, we have taken M_ 1.
Another factor that is working to prevent the code from shifting back and forth

very often is that the constant K which is computed in N is a lower bound for
while in $, ll/7yll is computed directly This has a conservative effect in switching
from $ to N. As a final precaution, we force the code to wait 20 steps after a change
in method families before considering a change again. This provides time for the error
estimates to settle down after the switch before trying to use them to make another
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140 LINDA PETZOLD

such decision. The constantsM/ andM_ can be chosen to be functions of the dimension
of the system of equations.

3. Imlflementafion considerations. In any practical implementation of a scheme
such as the one described above, it is important that the information upon which the
code is basing its decisions be reliable, and not misleading. The code should recognize
situations where it is not possible to obtain reliable information, and take some
appropriate action. In this section we will describe some of the problems involved in
ensuring that the information which our scheme requires, namely the local truncation
error and a reasonable lower bound for 118f/Syll, are reliable, and in recognizing those
situations where the information obtained may be misleading.

Several problems with estimating the local truncation error must be dealt with.
The first is a problem involving instability. Normally, when the stepsize for the nonstitt
method is limited by stability, it tends to oscillate about the largest stable value. (This
is explained in detail in Shampine and Gordon [5].) When the stepsize is inside the
region of absolute stability of the method, errors are damped. When it is outside the
stability region, there is an error growth which causes the error estimates to increase.
This eventually brings the stepsize back into the stability region (because the code
adjusts the stepsize to keep the error estimate less than e). In this way, most codes
do in some sense detect instability and handle it automatically. When this happens,
however, the code has no way of distinguishing whether the error estimates actually
reflect the smoothness of the solution or are polluted by terms arising from instability.
Thus, instability can make a problem appear to the code to have a solution that is
much less smooth than it really is. This is obviously a very undesirable situation for
our scheme, which is asking the question ater every step, "How smooth is the solution
relative to the size of the largest eigenvalues of the problem?"

There would seem to be several ways around this apparent dilemma. The simplest
solution is to switch to the stiff methods at the first sign that the stepsize is being
limited by stability. Unfortunately, this causes the code to use the stiff methods for
many problems that are only marginally stiff and could be solved much more efficiently
using the nonstitI methods.

Assuming then that our objective is to use the nonstitI methods as long as the
stepsize is not being limited very severely by stability, what can we do to ensure that
the estimates are not misleading? Because we intend to use the nonstitI method for
some time while the problem is stiff, some rather subtle difficulties can occur. For
example, even if we are using an A-stable corrector with functional iteration for
solving a problem which is becoming stiff, the error estimates may become polluted
by terms arising from instability, unless we are very careful about deciding when the
corrector iteration has converged. This is because the stability that is of interest here
is not the stability of the implicit method by itself (with the corrector solved exactly),
but the stability of the method with only a finite, but not necessarily constant, number
o corrector iterations.

For example, to illustrate the problems with stability, suppose the trapezoidal
method, with functional iteration and automatic stepsize control, is used for solving
a stiff problem, and that the corrector iteration is terminated when the norm of the
difference between two iterates is less than 8 (8 is some constant related to the error
tolerance e, like 8 e/10). As the problem becomes more and more stiff, the corrector
iteration eventually fails to converge, and the stepsize is reduced. This may happen
several times, until finally the stepsize is small enough that the iteration may converge,
not because the iteration is contracting, but because the difference between the
prediction and the first correction is less than 8. There are two ways to interpret this
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AUTOMATIC SELECTION OF SOLVING METHODS 141

behavior. If the stepsize is limited by convergence of the iteration, then the error
estimate must be less than e--possibly much less--if it is to be an accurate indication
of the smoothness of the solution. However, since the error estimate is based on the
difference between the predictor and the corrector, and this difference may be accurate
only up to the error 6 incurred from terminating the corrector iteration early, there
is a limitation on how small an error estimate the code can resolve. Another way of
seeing this is the following: As long as the difference between the prediction and the
first correction is less than 6, the algorithm we are using is in some sense not the
trapezoidal method. It is, instead, a prediction followed by one corrector iteration
based on the trapezoidal method. This method is not A-stable. Thus, errors are
amplified and the error estimate is misleading. These problems can be avoided if 1)
the code is forced to take two corrector iterations per step to estimate a rate of
convergence, and 2) the step is rejected if the rate of convergence is not rapid enough,
even though the difference between two successive iterates may be quite small. This is
an implicit limitation on the stepsize of the form h]16f/6y]]<= C, for C some constant,
because steps are rejected during the corrector iteration that do not satisfy this
criterion. A problem with this strategy is that when convergence of the iteration is
limiting the stepsize, there are likely to be many rejections of this type, and this is
costly.

The solution that we have adopted for these problems of polluted error estimates
is to explicitly limit the step size so as to try to ensure stability. Zlatev and Thomsen
[11] employ a strategy of this type to avoid repeated step failures, although their code
uses a user-supplied estimate of the magnitude of the largest eigenvalue of the Jacobian.
The form that this takes in our modification to LSODE is that when a new stepsize
and/or order is selected in the nonstiff part of the code, the stepsize that could be
used in the next step for each order is computed as the minimum of the stepsize
required for accuracy and the stepsize needed to ensure stability. (We require hK <=
rq/2, where K is our lower bound for I[]’/yll, and rq is the radius of the largest disc
contained in the stability region of the Adams PECE method of order q. There is no
good reason for using the PECE stability region here--in fact, it is probably more
reasonable to use the intersection of Adams-Moulton stability regions with regions
where a rapid rate of convergence of the iteration could be obtained. The code is not
very sensitive to these numbers, so long as they are the correct order of magnitude,
and they decrease monotonically with the order from order 2 or 3 upwards.) Since
this code chooses the order which can use the largest stepsize, an effect of this explicit
limitation on the stepsize is that when stability is limiting the stepsize, the order is
automatically lowered (unless it is already at second order) because the restrictions
are less severe for lower order methods.

Sometimes the error estimate cannot be trusted because it may be polluted by
roundoff error. This occurs frequently in three different situations" 1) At the very
beginning of the computation, the stepsize is often much smaller than what is needed
for accuracy, and it takes some time for the code to increase it. During this time,
error estimates are quite small, and may be indistinguishable from zero by roundoff.
2) After passing over a discontinuity, the code may be taking very small steps, while
the problem after the discontinuity is very smooth. The same problem as in 1) then
occurs. 3) With the limitation on the stepsize to ensure stability, as the problem
becomes more and more stiff the error estimates become smaller and smaller. If the
tolerance is tight, and/or if the constant M/ in (5) is relatively large, then the error
estimates can be driven down to a level which is sensitive to roundoff. The code should
switch to the stiff methods in situation (3), but not in (1) or (2).

The problem of detecting when the error estimate may be polluted by roundoff
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142 LINDA PETZOLD

does not appear to be trivial. We have taken a simple approach to this problem and
some further work is necessary on this topic. We say that the estimate is indistinguish-
able from zero if the norm of the difference between the predictor and the corrector
is less than one hundred times the norm of the predictor times the unit roundoff error
of the machine. When this condition is detected, then if the last stepsize chosen had
to be reduced to ensure stability, we switch from the nonstiff to the stiff methods.

In order to guard against switching back from the stiff methods immediately after
passing this test, a similar test in the reverse direction is necessary. We switch from
the stiff to the nonstiff methods if HN/Hs >= M_, and the estimated predictor-corrector
difference, for the stepsize that the nonstiff method would use, is not so small as to
be indistinguishable from zero as measured by the test described above.

The lower bound for I[a/’/diyll can also be misleading because of roundoff. This
has been noted by Shampine [7], and we use a test similar to his to describe whether
to form the bound. If Ily(k + 1)-y(k)ll---100. u Ily(0)ll, the bound is not formed and
the corrector is considered to have converged (the iteration is terminated). Since a
recent lower bound is important for our scheme, then if the bound has not been
generated recently and the last stepsize chosen had to be reduced to ensure stability,
we switch from the nonstiff to the stiff methods.

If the error tolerance e is so small that the norm of the difference between the
predictor and the corrector is forced to be smaller than one hundred times the norm
of the predictor times the unit roundoff error of the machine, then the error estimates
are indistinguishable from zero, and no lower bounds for Ilaf/ayll are formed. In this
situation it is impossible to tell whether the problem is stiff. To avoid these problems,
we double e if e _<- 100. u Ilyll at the start of any step.

Another difficulty with lower bounds for IIsTyll occurs in problems whose
dominant eigenvalues have large imaginary parts. For these problems, the lower
bounds can fluctuate between values much smaller than the spectral radius of the
Jacobian, and much larger. In response to this problem, and in the interests of being
conservative, we use the maximum of all lower bounds generated since the last time
a change in stepsize or order was considered (at most, q + 2 steps). If a lower bound
has not been generated during that time, the code may decide to switch to the stiff
methods. If the switch is not made, the most recent nonzero maximum is used. These
fluctuating estimates can cause problems for the stepsize and order selection mechan-
isms in the code. For instance, the stepsize may be restricted and the order lowered
based on an unusually large estimate, when possibly the next time such a change is
considered the estimate is much smaller. Since the earlier computation was probably
very stable (because of the large estimate restricting the stepsize), the response of the
code to the smaller estimate is likely to be to increase the stepsize and raise the order
(this is because, without the effects of instability on the error estimates, high order
differences of the solution tend to be smaller than low order differences). K.Stewart
[10] has suggested using averages of the lower bounds; this looks like a very go6d
idea, but in the case of wildly fluctuating estimates there still seem to be problems.
Either an average that heavily weights large values, or the maximum over a large
number of past steps would also help to minimize this difficulty. Order selection
algorithms now used in nonstiff codes do not appear to be adequate when the stepsize
is restricted to ensure stability and/or convergence of functional iteration. Different
order selection algorithms should probably be used in this situation.

4. Practical experience. In this section we will first complete the description of
the modifications that were made to LSODE, and then describe the results of using
the modified code to solve some problems.
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AUTOMATIC SELECTION OF SOLVING METHODS 143

A change from one family of methods to the other is considered after every
successful step, unless it has been less than twenty steps since the last switch. The test
is skipped if the current method is an Adams method of order greater than five. The
reasoning behind this is that the code is not likely to be using such a high order
method for solving a stiff problem. If the problem is stiff, then stability will be restricting
the stepsize, and the order should be lowered rapidly so that soon the test will be
made (there is some danger in this logic, but there have been no problems with this
in practice).

The method in the other family that we consider switching to is the one which
is of the same order as the method that we are currently using. This is in some ways
an arbitrary decision, because information is always available to consider any method
with order less than or equal to the current order. Most of the time when the switch
is made from Adams to BDF, the order is already quite low, so there is not much
choice .about which BDF to use. When switching from BDF to Adams there should
not be any stability problems with the new method, because the stepsize is restricted
to ensure stability. There is a potential source of problems when changing from Adams
to BDF, however. The stepsize will generally be increased substantially in this direction,
and it is possible that for the stepsize chosen, the BDF may be unstable (especially
if the problem has eigenvalues near the imaginary axis). If this happens, it is possible
that the code could be led into diagnosing that the problem is less smooth than it
really is, and would then switch back to the nonstiff methods. This problem has not
been encountered in practice.

The actual switch in method families has been implemented in the most obvious
way using the Nordsieck data representation. New method coefficients are calculated,
and the old Nordsieck vector is used as if that family of methods had been used all
along. Thus, in the first step of the "BDF" after using Adams methods, a true BDF
is not really being used, because that would require the polynomial represented by
the Nordsieck vector to interpolate past values of the solution, whereas the Adams
methods use a polynomial whose derivatives agree with the derivatives of the solution
at past times. If the switch is done often, this could cause stability problems, but there
is no problem if it is done only a few times. There are several devices in the code
which have been described earlier designed to prevent it from thrashing between
families of methods. Thrashing has not presented a serious problem in our experience.

The norms used in the code were all changed to weighted 11 norms, and ll/7yll
is computed in the stiff part of the code with the norm which is consistent with the
weighted vector norm. (The weights are the same as the ones used in the unmodified
LSODE, and depend on the error tolerances.) The constant M/ was taken to be five
in the tests described below, and M_ 5/M/ 1. The test problems are relatively
small (all have dimension less than or equal to 51 and most are much smaller than
that) so for these problems our algorithm is conservative about diagnosing some
problems as stiff. With these parameters and the range of tolerances used in the tests,
the code occasionally runs into the roundoff limitations described earlier.

The modified code was tested on the nonstiff DETEST problems [4] and on the
stiff DETEST problems [1], [2]. In addition, we solved van der Pol’s equation,

(7)
y y2, yl(0) 2.0,

y r/(1 y21)y2--Yl y2(O) 0.0,

with r/= 100.0 on the interval [0, 1000]. This problem was chosen because it alternates
between being stiff and nonstiff several times during the interval of integration, so
that it is a good illustration of the code’s ability to switch back and forth between the
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two families of methods. All computations were done in single precision on a
CDC 6600 with pure absolute error tolerances. The initial stepsize was determined
automatically by the code (using the algorithm in LSODE) in all cases. An initial
stepsize of 1.0E-12 was used for all problems. Detailed results for the DETEST
problems along with results for unmodified LSODE for the same problems are
available from the author. Both codes achieved comparable accuracies for the test
problems. Conclusions based on these tests are summarized below.

Very few of the problems of nonstiff DETEST were diagnosed as stiff. The times
that this happened the problems were solved in a comparable amount of time or faster
(in terms of function evaluations, steps, and execution time) than unmodified LSODE
using functional iteration.

On most of the nonstiff problems, the modified code used fewer steps, but more
function evaluations, than LSODE with MF- 10 (Adams methods with functional
iteration). This is mainly a consequence of forcing two corrector iterations per step.
The limitations on the stepsize to ensure stability do not appear to seriously limit the
efficiency of the code on these problems. The modified code was slightly less efficient
than LSODE on the sum total over all of the nonstiff problems. This is to be expected,
as there is some price to be paid for making the tests to diagnose stiffness for problems
that are not stiff. A summary of results for the nonstiff DETEST problems is shown
in Table 1. We have also included in this table the results of using LSODE with
MF 22 (BDF with Newton’s method using finite-difference Jacobian), as an example
of how a code which might be used if the problems were suspected to be stiff would
perform on the test problems.

TABLE 1
Nonstiff test problems, summary.

Exec. FCN No. of
Code EPS time calls steps

Switching* 10-3 5.265 7,891 3,234
10-6 12.041 17,189 7,681
10-9 24.589 30,987 14,819
Overall 41.894 56,067 25,734

LSODE (MF 10)f 10-3 4.334 5,412 3,557
10-6 10.417 11,081 8,948
10-9 24.243 22,581 19,595
Overall 38.994 39,074 32,100

LSODE (MF 22) 10-3 10.263 8,503 3,909
10-6 25.488 19,237 10,454
10-9 61.403 43,926 28,595
Overall 97.154. 71,666 42,958

* The stiff methods in the code use modified Newton iteration with finite-difference generated Jacobian
matrices.

t The option MF 10 uses Adams methods with functional iteration.
The option MF 22 uses BDF and modified Newton iteration with finite-difference generated

Jacobian matrices.

On the stiff problems, our experience indicates that the tests work very well at
loose and moderate tolerances. With EPS 10-3, the code switched to the stiff methods
at a reasonable time for every problem, and with EPS 10-6 the results were very
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good except for problem E4. At tighter tolerances, there were minor difficulties mainly
with B5 and E4. Both of these problems have eigenvalues with relatively large
imaginary parts, especially B5 which has eigenvalues -10+ 100i. So far as we have
been able to tell, the difficulties with these problems appear to be related to fluctuating
lower bounds for I[/’/y l[. The code switched back and forth between the two families
of methods once on problems E2, EPS 10-3, and F4, EPS 10-3. This is the correct
action for problem E2, which is van der Pol’s equation (7) with rl 5. Problem F4
is the Field-Noyes chemical oscillator [2], and the response of the code to this problem
appears to be incorrect, although this does not seriously degrade the efficiency of the
code (over using LSODE with MF 22).

A better test for deciding when the error estimate is polluted by roundoff would
probably increase the reliability of this scheme at tight tolerances, although it performs
well already for most problems, and we do not expect many users to ask for stringent
tolerances when solving stiff problems. For practically all stiff problems, this new
switching technique uses many fewer Jacobian evaluations, and it is definitely more
efficient than LSODE (MF 22) at loose tolerances. Since most stiff problems we
would expect to see in a practical situation would be somewhat larger than the test
problems (all have dimension less than or equal to ten) and would be solved with
loose to moderate tolerances, this technique is useful. At stringent error tolerances,
our scheme uses more function evaluations than LSODE (MF 22), probably due
again to forcing two corrector iterations per step in the nonstiff part of the code
(during the transient). A summary of results for the stiff DETEST problems is given
in Table 2, and detailed results are available from the author.

TABLE 2
Stiff test problems, summary.

Exec. FCN JAC No. of
Code EPS time calls calls steps

Switching*

LSODE (MF 22)t

10-3 8.244 8,331 488 3,821
10-6 21.606 20,676 707 9,984
10-9 54.213 50,763 1,894 22,751
Overall 84.063 79,770 3,089 36,556

10-3 14.488 10,143 753 5,368
10-6 27.414 19,227 1,285 11,136
10-9 61.564 43,129 2,700 27,103
Overall 103.466 72,499 4,738 43,607

* The stiff methods in the code use modified Newton iteration with finite-difference generated Jacobian
matrices.

" The option MF 22 uses BDF and modified Newton iteration with finite-difference generated
Jacobian matrices.

To illustrate how the code performs on a problem which repeatedly changes
character during the interval of integration, we have included the results of applying
the code to van der Pol’s equation (7) with r/= 100.0 on the interval [0, 1000]. A
plot of the first component of the solution to this problem is shown in Fig. 1. During
the times when the solution is changing rapidly, the problem is nonstiff, and when it
is changing more slowly, it is stiff. Statistics on the performance of the modified code
for this problem are shown in Tables 3a, b.
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146 LINDA PETZOLD

TABLE 3
van der Pol’s equation test results

Switched from Switched from
BDF to Adams Adams to BDF

Time Step Time Step

EPS 10-6

EPS 10-9

.04095 34
80.79 172 81.25 417

162.21 555 162.59 680
162.62 813 162.67 859
243.64 981 244.09 1190
325.05 1312 325.42 1423
325.44 1519 325.50 1583
406.46 1721 406.84 1846
406.87 1979 406.92 2025
487.89 2147 488.34 2356
569.30 2478 569.75 2711
650.72 2833 651.17 3042
732.14 3164 732.59 3381
813.54 3519 813.92 3644
813.95 3777 814.00 3823
894.97 3945 895.42 4154
976.38 4276 976.76 4387
976.78 4497 976.84 4546

.06328 73
80.40 341 81.18 618
81.19 840 81.28 953
161.89 1214 162.70 1639
243.32 1912 244.12 2332
324.68 2584 325.53 3018
406.14 3292 406.95 3719
485.38 3917 485.47 3938
487.51 4016 488.37 4433
566.98 4655 569.79 5186
650.38 5476 651.21 5913
731.77 6171 732.63 6659
813.23 6898 814.05 7369
894.66 7641 895.46 8079
976.07 7335 976.88 8766

Error No. of FCN JAC
Code tolerance steps calls calls

Switching* 10-6 4565 9311 372
10-9 8802 17465 456

LSODE" (MF 22) 10-6 5810 9124 707
10-9 15851 21617 1330

* The stiff methods in the code use modified Newton iteration with
finite-difference generated Jacobian matrices.

t The option MF 22 uses BDF and modified Newton iteration with
finite-difference generated Jacobian matrices.

We are still making improvements to the switching code. Anyone desiring a copy
of the code described in this paper (or possibly an updated version of this code) is
encouraged to write to the author.
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FIG. 1. Van der Pol equationmfirst component.

$. Snmmary. A scheme has been described for automatically determining
whether a system of ordinary differential equations can be solved more efficiently
using a class of methods suited for nonstitt problems or a class of methods designed
for stiff problems. A code using this new technique is nearly as efficient for solving
problems which are known in advance to be nonstitt (stiff) as codes designed for
nonstitI (stiff) problems. Switching between families of methods is often more efficient
than using a stiff method alone for problems which are nonstitt in some regions of
the interval of integration and stiff in other regions. This scheme is useful for solving
problems where the character of the problem is not known in advance, because the
methods which are likely to be most efficient are selected automatically.
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